Skip to main content
Explore links (header)
  • UCLA Health Home
  • About Us
  • Cancer Center
  • Hospitals & Clinics
  • School of Medicine
  • Academic Departments
Universal links (header)
myUCLAhealth
News & Insights
Community & Equity
Contact Us
310-825-2631
  • English
  • العربية
  • 中文
  • Italiano
  • 日本語
  • 한국어
  • فارسی
  • Русский
  • Español
  • Tiếng Việt
  • English
  • العربية
  • 中文
  • Italiano
  • 日本語
  • 한국어
  • فارسی
  • Русский
  • Español
  • Tiếng Việt
Search
Try looking up a doctor, a clinic location, or information about a condition/treatment.
Examples
  • "Lin Chang" for a Doctor by name
  • "Flu Symptoms" for a Condition
  • "Cardiologist" for a Doctor by specialty
  • "Santa Monica" for a Location
UCLA Health
Primary navigation
  • Find a Doctor
  • Find a Location
  • Virtual Care
  • Make an Appointment
  • Second Opinion Consults
  • Medical Services
  • Cancer Medical Services
  • Outpatient Locations
  • Prepare for Your Visit
  • Visitor Guidelines
  • Billing & Insurance
  • Medical Records
  • Community Resources
  • Support & Information
  • Patient Financial Assistance Program
  • International Services
  • Medical Services
  • Wellness & Routine Care
  • Clinical Trials
  • COVID-19 Info
  • Immediate Care
  • Primary Care
  • Pediatric Care
  • Cancer Care
  • Surgical Centers
  • Imaging/Radiology
  • Hospitals
  • All Locations
  • About UCLA Health
  • Patient Stories
  • Events Calendar
  • Donate to UCLA Health
  • Work at UCLA Health
  • For Healthcare Professionals
  • Connect with UCLA Health
  • Care Compliments
Find a Doctor
Primary navigation (mobile)
Find a Doctor
  • Find a Doctor
  • Find a Location
  • Virtual Care
  • Make an Appointment
  • Second Opinion Consults
  • Medical Services
  • Cancer Medical Services
  • Outpatient Locations
  • Prepare for Your Visit
  • Visitor Guidelines
  • Billing & Insurance
  • Medical Records
  • Community Resources
  • Support & Information
  • Patient Financial Assistance Program
  • International Services
  • Medical Services
  • Wellness & Routine Care
  • Clinical Trials
  • COVID-19 Info
  • Immediate Care
  • Primary Care
  • Pediatric Care
  • Cancer Care
  • Surgical Centers
  • Imaging/Radiology
  • Hospitals
  • All Locations
  • About UCLA Health
  • Patient Stories
  • Events Calendar
  • Donate to UCLA Health
  • Work at UCLA Health
  • For Healthcare Professionals
  • Connect with UCLA Health
  • Care Compliments
Explore links (mobile)
  • UCLA Health Home
  • About Us
  • Cancer Center
  • Hospitals & Clinics
  • School of Medicine
  • Academic Departments
Universal links (mobile)
myUCLAhealth
News & Insights
Community & Equity
Contact Us
310-825-2631
Breadcrumb
  1. Home
  2. Departments
  3. Neurology
  4. About UCLA Neurology
  5. Neurology Chair's Reports
  6. Summer 2017
Neurology

Quarterly letter from the Department Chair

Sub-navigation

Summer 2017
  • Neurogenomics Center to Accelerate Understanding of Diseases
  • New Miniaturized Microscopes Zoom onto Social Brain Networks in Epilepsy
  • Parkinson’s Disease: Innovation, Collaboration, Transformation
  • Quarterly letter from the Department Chair
  • UCLA Neurovascular Imaging Core: Seeing Inside Every Brain to Improve Brain Health
Summer 2017
  • Neurogenomics Center to Accelerate Understanding of Diseases
  • New Miniaturized Microscopes Zoom onto Social Brain Networks in Epilepsy
  • Parkinson’s Disease: Innovation, Collaboration, Transformation
  • Quarterly letter from the Department Chair
  • UCLA Neurovascular Imaging Core: Seeing Inside Every Brain to Improve Brain Health

Summer 2017

mountain biking

There are five ways to crash a mountain bike. These are the Glance, the Graze, the Kersplat, the Kersplat-Graze and the Dismemberment. These differ in kinetic energy and associated injuries. My first shoulder surgery came from a Kersplat. These five mountain biking crashes are “phenotypes”—the visual appearance of an event or a thing.  

In the Kersplat, one flies off the mountain bike and hits the trail, with all of the deceleration occurring at the point of impact. The body is out of whack for a while. In mountain biking, the phenotype is really the last stage of the event. The crash was set in motion long before the final visual element. Hypothetically, a Kersplat might be set in motion by the decision to go off of this cliff.

In Neurological disease, the clinical presentation of the disease is the phenotype. Stroke presents with the acute onset of movement, sensory or language abnormalities. Alzheimer’s disease presents with a decline in memory. Parkinson’s disease presents with slowness of movements. Just like in mountain biking, this disease “phenotype” is actually preceded by a whole series of events. One of the first events in neurological disease is an abnormal gene, or a genetic mutation. The genetic mutation may directly cause the disease that we see, the phenotype. Or a genetic mutation may just be silent in the brain and then a second process hits, such as aging or exposure to a toxin, and then these events combine to cause neurological disease. To understand the cause of diseases, Neurologists need to understand the genes underneath them—to be able to sequence the genes of our patients.

In the next post, “Neurogenomics Center to Accelerate Understanding of Diseases”, we introduce a major new clinical research center in the Department, the Clinical Neurogenomics Research Center, or CNRC. The CNRC will soon sequence the genome of all Neurology outpatients. We will screen for genes that may be causing disease—and were previously unknown. We will screen for genes that may be disease modifiers—genes that do not cause the disease but can determine how fast the disease progresses or whether it will respond to specific medicines. We will study how some patients may get a neurological disease and unexpectedly not suffer a severe phenotype. These patients may progress very slowly in a disease or not suffer the same degree of initial injury. This is called Brain Resilience. If we can understand the molecules that produce resilience to disease, we can identify targets for new drugs. These drugs will alter the molecular events that lead to a disease, and thereby reduce the disease phenotype. Imagine enhancing resilience for a Kersplat!

S. Thomas Carmichael, Chair, UCLA Department of Neurology

UCLA Health
International Services
Regional Sites
  • 中文 |
  • العربية

Footer Utility links

  • myUCLAhealth
  • Community & Equity
  • News & Insights
  • Your Feedback
  • Contact Us

Footer navigation

  • Find Care

    • Find a Doctor
    • Find a Location
    • Immediate Care
    • Emergency Care
    • Make an Appointment
    • Medical Services
  • Patient Resources

    • Prepare for Your Visit
    • Visitor Guidelines
    • Patient Education
    • Billing & Insurance
    • Price Transparency
    • Support & Information
  • Treatment Options

    • COVID-19 Info
    • Wellness & Routine Care
    • Clinical Trials
  • Discover UCLA Health

    • About UCLA Health
    • Departments
    • Patient Stories
    • For Healthcare Professionals
    • Inclusive Excellence
    • Contact Media Team
    • Donate to UCLA Health
    • Work at UCLA Health
    • Volunteer for UCLA Health
    • Share Your Experience
    • Subscribe to our Newsletter
    • Read our Publications
  • Get the UCLA Health App

    • Download on the App Store
    • Get it on Google Play
    • View all UCLA Health Apps

Policy links (footer)

    |
  • HIPAA Notice |
  • Privacy Notice |
  • Nondiscrimination |
  • Report Misconduct |
  • We listen. We care.
© 2025 UCLA Health